产品
产品中心
< 返回主菜单
产品

交换机

交换机所有产品
< 返回产品
交换机
查看交换机首页 >

无线

无线所有产品
< 返回产品
无线
查看无线首页 >

云桌面

云桌面产品方案中心
< 返回产品
云桌面
查看云桌面首页 >

安全

安全所有产品
< 返回产品
安全
查看安全首页 >
产品中心首页 >
行业
行业中心
< 返回主菜单
行业
行业中心首页 >

wifi7与wifi6区别一文读懂(下)

即将颁布的wifi7最新消息有哪些?wifi7的主要技术特征有哪些?除了wifi7速率提升相关技术之外,wifi7的主要技术特征体现在MLO、Preamble Puncturing、MRU这三种技术上,这是本文重点论述的对象。

  • 发布时间:2023-06-27

  • 点击量:

  • 点赞:

分享至

我想评论

摘要:

即将颁布的wifi7最新消息有哪些?一个重要消息就是,在wifi7技术中,多AP协同技术被砍掉了。目前看,除了wifi7速率提升相关技术之外,wifi7的主要技术特征体现在MLOPreamble PuncturingMRU这三种技术上,这是本文重点论述的对象。

 

名词说明:

wifi7,网络通俗写法;标准写法是:Wi-Fi 7

wifi6,网络通俗写法;标准写法是:Wi-Fi 6

 

1. wifi7的主要技术特征

Wi-Fi 7的主要技术特征很多,限于篇幅,本文仅介绍MLOPreamble PuncturingMRU三种技术

早期的Wi-Fi 7技术标准草案里有AP协同技术,在最新标准的修订中这个功能被砍掉了,预计留待Wi-Fi 8去实现,本文不做介绍。

1.1 wifi7技术之:多链路传输技术(MLO

多链路传输技术(MLO), Multi-Link Operation,在一个AP里,有多个射频芯片,2.4GHz芯片,5GHz芯片,6GHz芯片。AP的多个芯片可以同时和一个STA建立链路通信。MLOMAC层技术,可以跨频段地捆绑多个链路成一个虚拟链路。

MLO技术说明

MLO有两种工作模式。

其一,多发单收模式,多链路传输同一信息。系统自动选择最好的链路传输。比如当2.4GHz频段干扰大时,自动切换到信号更干净的5GHz频段传输信息。总是选择最优信道传输,效果是大大降低时延。在多终端的高密环境下,这种方式还可以提高传输的可靠性和质量。

MLO的多发单收模式

锐捷网络实际测试,其Wi-Fi 7设备采用MLO技术,同时建立5G6G两条链路,平均时延从Wi-Fi 684ms大幅下降到6ms。时延在10ms以内,已经接近有线网络的时延水平。

锐捷网络采用MLO技术做的降低时延测试

其二,多发多收模式,一个信息分拆多条链路分别传输。把一个信息分拆成多份,采用MLO技术,通过多条链路同时传输,STA接收到之后再整合。这种方式就大大提升传输速率。

MLO的多发多收模式

大家可能有个困惑:这里的MLO技术跟前面讲的MU-MIMO空间流技术有什么异同点?

相同点

MLO技术和MU-MIMO空间流技术,都可以在一个APSTA之间建立多条链路通信,同时收发信息。

不同点

MU-MIMO空间流技术是限于AP同一个射频芯片的,比如说16条流,指的是一个AP中一个射频芯片,可以同时对外建立16条通信链路,当然这16条通信链路可以和一个STA建立,也可以跟多个STA建立。

MLO技术是指一个AP多个射频芯片同时跟同一个STA建立通信链路。

可以形象地理解为:在一个AP和一个STA之间,有三种交通媒介,铁路,公路,航空。通过三种交通媒介同时通信,用到的是MLO技术。单就其中一个媒介而言,比如公路,同时有16层公路可以通信,那就是MU-MIMO空间流技术。

MLO技术类似公路、铁路、飞机三种交通媒介同时运输信息

1.2 wifi7技术之:多资源单元(MRU

多资源单元,MRU(Multiple resource uint),是提高频谱资源利用率的技术。

图十五中左图,Wi-Fi 5OFDM工作模式,横轴是时域,纵轴是频域。在一个最小时间单位里,一个信道只向一个用户发送信息。即一个用户占用一个单位时间整个信道,不管这个用户的信息是否能占满整个信道,存在资源浪费。

右图,Wi-Fi 6OFDMA工作模式,引入资源单元,RUResource Unit)的概念。把这20MHz的信道在同一个时域单位上划分成多个RU。每个RU包含一定数目的子载波,每个RU向一个用户发送信息。这样在一个最小时间单位里,可以同时向多个用户同时发送信息,大大提升了资源利用率。

Wi-Fi 5的OFDM和Wi-Fi 6的OFDMA技术

一个RU中包含多少个子载波,不是随意组合的,Wi-Fi标准规定了RU的固定组合形式,主要有:26-tone RU(即26个子载波组成一个RU),52-tone RU106-tone RU242-tone RU484-tone RU996-tone RU1992-tone RU

Wi-Fi 6中,一个用户只能对应一个RUWi-Fi 7提出了MRU概念,一个用户可以分配多个RU

那这个MRU有什么用呢?

例如,20MHz的信道,要给3个用户使用。Wi-Fi 6中,最大资源利用率的分配如下:1个用户分配106-tone RU2个用户分别分配,52-tone RU,一共用了210个子载波(tones),还浪费了24个子载波(一个20MHz信道一共234个数有效子载波,参见《wifi7wifi6区别一文读懂(上)》的“wifi7相关基本概念)。

现在,Wi-Fi 7应用MRU,就可以1个用户分配106-tone RU+26-tone RU(把2RU分配给一个用户),另2个用户还是分别分配52-tone RU。这样就把20MHz信道的资源用足,提升了信道资源利用率,提高速率,降低时延

需要注意的是,不是任意两个RU都可以组成一个MRU的,而是有限定条件的。Wi-Fi 7标准把RU分为小部RU和大部RU两类,规定只有同在一类中的RU才可以组合成一个MRU,即必须同为小部RU,或同为大部RU,才可以组成一个MRU

小部RU26-tone RU52-tone RU106-tone RU

大部RU242-tone RU484-tone RU996-tone RU1992-tone RU

1.3 wifi7技术之:前导码打孔(Preamble Puncturing

前导码打孔,Preamble Puncturing(以下简称Puncturing),这个技术在Wi-Fi 6标准里是可选技术,由于其技术成本高,一般产品的实际功能里没有这个功能。到Wi-Fi 7标准中,这个成为强制标准,即产品必须要具备的功能。

前面谈到,为提升速率采用信道捆绑技术,比如:把820MHz的信道捆绑成一个160MHz的信道。

在信道捆绑中,有主信道(Primary channel)和辅信道(Secondary channel)之分。在捆绑成40MHz的信道中,有Primary20信道,Secondary20信道;然后这两个信道又共同组成一个捆绑80MHz信道的Primary40,另外的是Secondary40;以上共同组成Primary80,其余的组成Secondary80

捆绑160MHz信道的主辅信道图

信道捆绑,以前的协议有两条原则:原则一,只能捆绑连续的信道原则二,在捆绑信道模式下,必须在主信道干净、无干扰的情况下,辅信道才能传输信息

那假设,当Secondary20出现干扰的时候,Primary40整体就是不干净的信道,那么Secondary40就无法传输信息了;再进一步Primary80也不干净,那Secondary80也无法传输信息。最后,一个捆绑成160MHz的信道,因为其中一个Secondary2020MHz信道干扰,一下子下降为只剩20MHzPrimary20)传输信息了,7/8信道资源都浪费了。

Wi-Fi 7Puncturing技术正是解决这个问题的。

还是上面这个例子。Secondary20信道受到干扰。采用Puncturing技术,直接把这个Secondary20信道打孔、屏蔽。然后剩余的140MHz信道继续捆绑在一起传输信息。此时,还是工作在160MHz捆绑信道模式下,但实际传输的时候,把Secondary20信道置于Null(空)状态。这种例子中采用Puncturing技术,信道利用率是之前的7倍(140:20)。

采用Puncturing技术的160MHz捆绑信道

Puncturing技术的核心是提升了非连续信道的利用率,其效果是提升了实际速率降低了时延

Puncturing技术的应用效果

2. wifi7技术的应用场景

Wi-Fi联盟官方在Wi-Fi 7标准时,对于其应用场景就有了明确预期:AR/VR/XR、全屋视频分发、游戏、远程医疗、企业制造、虚拟培训、教育、酒店场所

 

读到这里的朋友一定对Wi-Fi 7技术很有兴趣。也欢迎大家就Wi-Fi 7的技术问题、应用场景、市场等问题留言、讨论、交流。

 

下篇小结:

wifi7wifi6区别一文读懂》(下),结合wifi7最新消息,在wifi7技术中,重点论述了体现wifi7的主要技术特征的MLOPreamble PuncturingMRU三种技术。

 

 推荐内容:

 更多wifi7内容请点击查看:《wifi7与wifi6区别一文读懂(上)

 

关于Wi-Fi 7技术,您还想了解什么信息,请点击链接或扫描二维码留言!

关于Wi-Fi 7技术,您还想了解什么信息,请扫描二维码留言!

更多技术博文

任何需要,请联系我们

返回顶部

请选择服务项目
关闭咨询页
售前咨询 售前咨询
售前咨询
售后服务 售后服务
售后服务
意见反馈 意见反馈
意见反馈
更多联系方式